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ABSTRACT
A point-implicit scheme has been used to solve the 1-D heat equation with and without source terms with Dirich-

let boundary conditions. The point-implicit scheme is formulated by approximating the implicit operator, such that
resulting finite difference equation does not involve the inversion of matrix at each iteration. The formulation is uncon-
ditionally stable for the Heat equation without source and with a negative source (sink), but shows conditional stability
when (positive) source terms are included. Results compared with the Euler explicit method indicate that the point
implicit schemes require 40% less time steps to arrive at the steady state solution. However, for computations with
same value of r = α

∆t
∆x2 , explicit scheme requires less number of time steps to reach steady state. Hence computation

cost is saved compared to a fully implicit scheme.
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NOMENCLATURE
∆t time step, s
∆x grid spacing, m
r (= α∆t/∆x2).
α thermal diffusivity.
a source coefficient
δ (=a∆t)

INTRODUCTION
In development of computer codes for solving partial differential equations of the hyperbolic or parabolic type, which

require (or are suitable for) a time-marching scheme for obtaining the solution, the choice of the time integration method used
is an interesting dilemma. The general choices are the explicit formulation, which results in clean codes with low per-time-step
cost, or the implicit formulation, which results in bulkier code with high cost per iteration but allows for use of arbitrarily high
time steps in most cases. The time step restriction for the explicit methods stems from satisfying the CFL (Courant-Friedrichs-
Lewy) condition in wave propagation problems, whereas fully implicit methods are generally unconditionally stable, implying
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that a time step of the user’s choice can be used without worrying about solution divergence. If obtaining a steady-state solution
is the objective, then typically implicit method is the winner In this paper, a point implicit scheme for computing the steady
state numerical solution of heat equation [1, 2] with and without a source term is formulated using a finite difference method.
Previous examples of the use of point-implicit schemes for the Navier-Stokes equations includes the work by Gnoffo [3] and
Kadigolu et al [4]. Results are compared with the simple explicit scheme. The general problem statement can be mathematically
expressed as follows:

∂u
∂ t

= α
∂ 2u
∂x2 +au (1)

Here u is the temperature, α is thermal diffusivity, and a is source coefficient with dimensions of t−1. For heat equation without
source, a will be zero. This equation is solved numerically subjected to following condition:

Initial Condition : u(x,0) = 0 0 < x < 1
Boundary Condition : u(0, t) = 1 , u(1, t) = 0

Steady state solution is determined using explicit and point implicit time marching techniques, and the effects of grid spacing
∆x, r, and a non-dimensional source strength δ , on number of iterations required to reach a converged solution, which is used
as a comparison criteria, are studied.

METHODOLOGY
Consider the Euler or the Navier-Stokes Equations written in conservation form,

∂~U
∂ t

+~∇.~F = 0 (2)

where ~U is the vector of conservative variables and ~F is the vector of fluxes. If we consider a scalar equation in similar form,
then using a finite difference method, the differential equation solved at each node ′i′ is given by

∂Ui

∂ t
+
(
~∇.~F

)
i
= 0 (3)

The residual at node ′i′ in that case is give by,

Resi ≡
dUi

dt
(4)

In practice, residual at a node is calculated using the divergence term in Eqn. 2. The definition for the global residual or L2
norm of residual can then be given as [5],

||Res||2 ≡

√
1
N

N

∑
i=1

Res2
i (5)

where N is the total number of nodes. For any solution variable s, the L2 error is similarly defined as [5]

ErrorL2 =

[
∑

N
i=1 (si− sexact

i )2

N

]1/2

(6)
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For the current study, which solves the heat equation using the finite difference method, solution convergence criteria is based
on the reduction of residuals. The solution is considered converged if ResL2 < 1e− 14 within 100000 iterations. This results
in cases in which convergence is not reached within the maximum iterations allowed, although the residuals decreases with
iterations, as will be observed in the results presented later. This is due to the restrictions imposed on the number of iterations
computed for each run in this case, and does not indicate a diverging solution.

Point Implicit Scheme For Heat Equation
The point implicit scheme applied to Eqn. 1 results in the discretized form of the equation shown in Eqn. 7.

Un+1
i −Un

i
∆t

= α
Un

i+1−2Un+1
i +Un

i−1

∆x2 +aUn+1
i (7)

It is to be noted that eqn. 7 is not a consistent discretization for the unsteady heat equation, but will approach the proper
representation of the steady-state problem at large values of t.
Rearranging terms and writing α∆t/∆x2 as r , and a∆t as δ , we get the difference equation as,

Un+1
i =Un

i +

[
r
(
Un

i+1−2Un
i +Un

i−1
)
+δUn

i
]

(1+2r−δ )
(8)

Instead of solving Eqn. 1 for particular values of α and a, non-dimensional parameters r =
(
α∆t/∆x2), δ = a∆t, and Sc = δ/r

are varied. For a fixed value of α = 1.22e−02, different values of Sc and r are selected and iterations are performed. Distinct
values of Sc selected are 0 (for no source term), -0.01, -0.1, -1.0 (for negative source coefficients), and 0.01, 0.1, 1.0 (for
positive source coefficients). Iterations are performed for different uniform grids wherein the number of grid points (GP) used
are {11,21,41,81,161}. The range of r is 0.001−100000. In order to keep a cap on the number of cases, the change in r across
simulations is not kept a constant, but varied, as the order of magnitude of r varies. Thus for r < 1, ∆r = 0.01, whereas for
r ≈ O(100), ∆r = 10 (see Table 1 ).

TABLE 1: Increment of r for different ranges of r

Range ∆r

0.001-0.01 0.001

0.01-1.0 0.01

1.0-10 0.1

10-100 1

100-1000 10

1000-10000 1000

10000-100000 10000

RESULTS AND DISCUSSION
Heat equation with (Sc 6= 0) and without (Sc = 0) source is solved using explicit and point implicit schemes. In all cases,

the number of iterations corresponding to converged solution (if obtained) is determined for each value of r, and number of
iterations vs r is plotted for both explicit and point implicit scheme.
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Heat Equation Without Source
Iterations for this case are performed by keeping Sc = 0 and varying r using different grids. Figure 1 shows plots of number

of iterations (for converged solution) vs. r, for explicit and point implicit scheme applied to heat equation without source with
α = 1.22e−02. It can be observed, that for both point implicit and explicit schemes, with increase in r, the number of iterations
to convergence decreases. This is expected, as a higher value of r implies a higher value of ∆t, for fixed values of α and ∆x
(grid).

For the convergence criteria considered in this study, converged solution is not obtained till r reaches certain value (denoted
as rmin), for a given grid. For r < rmin, it is observed (not shown) that reduction in residuals is too slow and it does not reach
a value of 1e−14 after 105 iterations. The value of rmin increases with increase in number of grid points for both explicit and
point implicit scheme. For explicit scheme, after a particular value of r (denoted as rmax), residuals shoot up to very high value
and converged solution is not obtained. For all grids, value of rmax obtained is 0.5 using explicit scheme. For a given value of
r (r < rmax), number of iterations required to reach convergence using the point implicit scheme is higher than that required for
the explicit scheme. However, there exists a particular value of r (the value varies with grid resolution) for which the number
of iterations required to attain convergence using point implicit scheme is less than the minimum number of iterations required
for explicit scheme.

Table 2, shows minimum number of iterations obtained for explicit and point-implicit scheme for heat equation without
source term, with α = 1.22e−02, for different grids. For explicit scheme, column rmin.NOI indicates value of r for which number
of iterations required to get converged solution is minimum and column NOI represents number of iterations corresponding
to rmin.NOI . As point implicit scheme exhibits unconditional stability, and the number of iterations decreases with increase in
r, notion of rmin.NOI is not be applicable for this case. Instead, NOI are given in Table 2 for maximum value of r(=100000)
used in this study. It can be observed that for each grid, NOIpt.imp ≈ 0.6NOIexp. Solutions obtained with explicit and point
implicit schemes for r = 0.04,α = 1.22e− 02, and 21 grid points are compared with the exact solution in, Fig. 2); both the
numerical solutions matches very well with exact solution. Error norm obtained in this case is 7.57e−14 for both explicit and
point implicit schemes.

TABLE 2: Minimum number of iterations without source; α = 1.22e−02

Explicit Point Implicit

GP rmin.NOI NOI r NOI

11 0.5 591 100000 348

21 0.5 2396 100000 1409

41 0.5 9713 100000 5647

81 0.5 38485 100000 22511

161 - - 100000 89194

Heat Equation With Source
For each value of Sc, r is varied with the value of α fixed. The variation in the number of iterations required to achieve

convergence with r is noted for both explicit and point implicit schemes.

Heat Equation With Negative Source Term Figures 3 and 4 plot number of iterations (required for convergence)
against r for heat equation with negative source coefficient having α = 1.22e− 02, using explicit and point implicit schemes
respectively. It can be seen that for each value of Sc, converged solution is obtained with both explicit and point implicit scheme,
but for explicit scheme, maximum value of r is less than or equal to 0.5 and varies with value of Sc. An interesting point to note
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(a) Explicit scheme
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(b) Point implicit scheme

FIGURE 1: Number of iteration vs. r without source.
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FIGURE 2: Exact and numerical solution comparison for Sc = 0.00, α = 1.22e−02, r = 0.04, 21 grid points

is that for the explicit scheme, the number of iterations (to convergence) decreases with increase in r up to a specific value of
r (rmin.NOI), and with further increase in r(> rmin.NOI), the number of iterations increases till the solution diverges for r > rmax.
It should be noted that the value of rmin.NOI does not change with number of grid points for given value of Sc, which is clearly
observed in Fig. 3 for Sc =−1.0. For point implicit scheme, with all values of Sc, number of iterations decreases with increase
in r, and converged solution can be obtained with any value of r .

Table 3 shows minimum number of iterations for heat equation with negative source with α = 1.22e− 02 for different
values of Sc and grids considered in this study. For explicit scheme, rmin.NOI remains constant for given value of Sc, irrespective
of the grid resolution used. Also, rmin.NOI in one case ( Sc = −1.0) is less than rmax. Value of rmin.NOI decreases with
increase in absolute value of Sc. For a given grid resolution, minimum number of iterations decreases with increase in absolute
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value of Sc. Point implicit scheme in this case is unconditionally stable, hence concept of rmin.NOI is not applicable here. In
Table 3 the number of iterations corresponding to r = 100000 are mentioned for the point-implicit scheme, but it is to be noted
that r can be further increased to get reduction in number of iterations. Minimum number of iterations obtained with point
implicit scheme (NOIpt.imp) is less than that with explicit scheme (NOIexp). Also, it can be observed for each grid resolution,
NOIpt.imp ≈ 0.6NOIexp .

Solution for Sc = −0.01 for both point implicit and explicit scheme is given in Fig. 5, with r = 0.04, 21 grid points and
α = 1.22e− 02. It can be seen that the numerical solutions obtained with explicit and point implicit scheme are virtually
identical although both of these show some difference with the exact solution. In this case the error norm is obtained as
9.68e− 02, for both point implicit and explicit scheme. For explicit and point implicit schemes, error norm does not changes
with r for a given grid (not shown here).
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(a) Sc = -0.01

r

N
u

m
b

e
r
 o

f 
It

e
r
a

ti
o

n
s

10
3

10
2

10
1

10
0

10
2

10
3

10
4

10
5

GP 11

GP 21

GP 41

GP 81

GP 161

(b) Sc = -0.10
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(c) Sc = -1.00

FIGURE 3: Number of iteration vs. r for explicit scheme with negative source coefficient; α = 1.22e−02, r = 0.04.
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(a) Sc = -0.01
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(b) Sc = -0.10
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(c) Sc = -1.00

FIGURE 4: Number of iteration vs. r for point implicit scheme with negative source coefficient; α = 1.22e−02, r = 0.04.

Heat Equation With Positive Source Term For Sc = 0.01 converged solution is obtained for 11 and 21 grid points
only, and for 41, 81, and 161 grid points, converged solution is not obtained as residuals shoot up with every iteration for all
values of r for both explicit and point implicit scheme. For Sc = 0.1,1.0 converged solution is not obtained for any grid as
residual was found to be diverging for any value of r.

Figure. 6 and 7 shows the number of iteration vs. r for different grids and values of Sc, for explicit and point implicit
scheme respectively. It can be seen that for explicit scheme, number of iterations (to convergence) decrease with increase in r,
except for 11 grid points, where near r = 0.5, the number of iterations increase with increase in r(< rmax). For point implicit
scheme, number of iterations required for convergence decreases with increase in r for grids on which converged solution is
achieved.
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TABLE 3: Minimum number of iterations with negative source; α = 1.22e−02

Explicit Point Implicit

GP rmin.NOI NOI r NOI

Sc=-0.01

11 0.49 540 100000 317

21 0.49 1714 100000 1005

41 0.49 3689 100000 2161

81 0.49 5184 100000 3029

161 0.49 5789 100000 3375

Sc=-0.10

11 0.47 301 100000 176

21 0.47 486 100000 285

41 0.47 573 100000 336

81 0.47 603 100000 358

161 0.47 624 100000 379

Sc=-1.00

11 0.33 66 100000 38

21 0.33 72 100000 42

41 0.33 74 100000 44

81 0.33 77 100000 46

161 0.33 79 100000 49

Table 4 shows minimum number of iterations for explicit and point implicit scheme for heat equation with positive source
having α = 1.22e−02. For explicit scheme and Sc = 0.01, value of rmin.NOI = 0.5 for both 11 and 21 grid points. For point
implicit scheme concept of rmin.NOI is not applicable in this case as with increase in r, number of iterations corresponding to
converged solution decreases. Minimum number of iterations obtained with explicit scheme (NOIexp) are much higher than
that obtained with point implicit scheme (NOIpt.imp) for cases in which converged solution is obtained. Also, for Sc = 0.01,
NOIpt.imp ≈ 0.6NOIexp is satisfied for 11 and 21 grid points.

Solution for Sc = 0.01, r = 0.04, and α = 1.22e− 02 obtained for 21 grid points is mentioned in Fig. 8. Numerical
solution obtained with explicit and point implicit scheme are same and matches approximately with exact solution. Error norm
of 2.67e− 01 is obtained in this case for both explicit and point implicit scheme. Error norm for converged solution does not
change with r for all grid (not shown here).

CONCLUSION
A point implicit scheme applied to the heat equation shows that it is unconditionally stable for heat equation without a

source term and with a negative source term, whereas it is conditionally stable for heat equation with a positive source term.
Comparison with an explicit scheme shows that the minimum number of iterations required for convergence with point-implicit
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FIGURE 5: Exact and numerical solution comparison for Sc =−0.01, α = 1.22e−02, r = 0.04, 21 grid points
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FIGURE 6: Number of iteration vs. r for explicit scheme with positive source coefficient; α = 1.22e−02, r = 0.04.
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FIGURE 7: Number of iteration vs. r for point implicit scheme with negative source coefficient; α = 1.22e−02, r = 0.04.

scheme is about 60% of the number of iterations required for the explicit scheme. Hence, approximately 40%+ reduction in
number of iterations can be achieved with point implicit scheme. Considering the fact that the simple explicit and point-implict
schemes have almost identical computational cost it can be inferred that if steady-state solution of the heat equation is to be
obtained using time-marching schemes, point implicit scheme outperforms explicit scheme.
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TABLE 4: Minimum number of iterations with positive source; α = 1.22e−02

Explicit Point Implicit

GP rmin.NOI NOI r NOI

Sc=0.01

11 0.5 653 100000 387

21 0.5 3996 100000 2367
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FIGURE 8: Exact and numerical solution comparison for Sc = 0.01, α = 1.22e−02, r = 0.04, 21 grid points
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